

Capacity II

Presented By – Dr.Ashutosh Bajpai Prof. of Sugar Technology N.S.I. Kanpur

National Sugar Institute, Kanpur

Evaporators-

Crushing rate - 100 t.c.h.

M.J.% cane - 110%

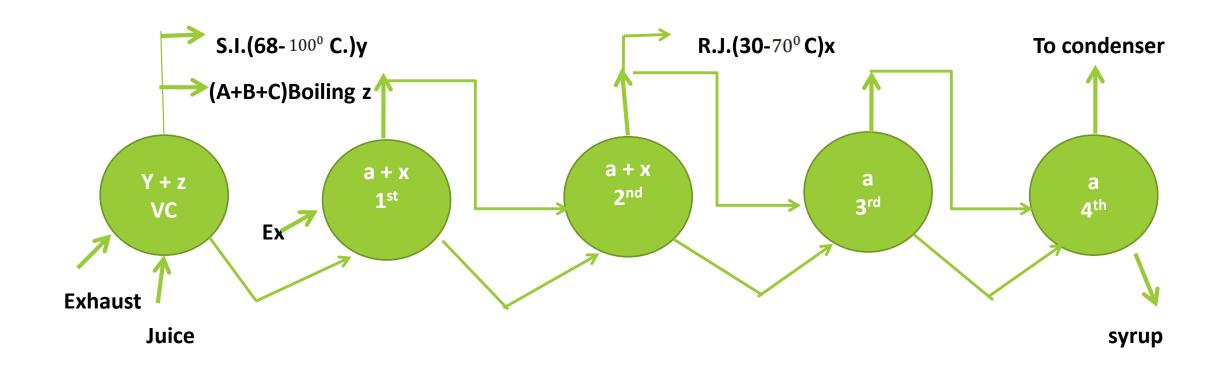
Brix of juice - 15

Brix of syrup - 60

R.J. Initial temp - 30⁰ C.

R.J. final temp -70° C.

S.J. initial temp- 68°C.


S.J. final temp- 100°C.

Massecuite% Cane- 26+12+7= 46%

Evaporation rates-	V.C 32 kg/ m ² /hr
	1 st - 29
	2 nd - 26
	3 rd - 24
	4 th - 18
Latent heats-	1 st vapour- 532 k.cal/kg
	2 nd - 540
	3 rd -550

National Sugar Institute, Kanpur

NATIONAL SUGAR INSTITUTE, KANPUR

त्त्यमेव जयते

Total Evaporation = $4a+2x+y+z = 100 \times 1.1(1-\frac{15}{60})$ = 83T/hr = 83000 kg/hvapours for S.J.= $\frac{\text{MS}\Delta t}{532X0.95} = \frac{100X1.1X1000X0.9(32^{\circ}\text{C})}{532X0.95} = 6268 \text{ kg/h}$

Vapours for (A+B+C) boiling = 45 x 0.6 = 27 T/hr = 27000kg/h

Evaporation in V.C. = 6268+27000 = 33268 kg/hrH.S. of V.C.= $\frac{33268}{32} = 1040 \text{ s.q.m.}$ Evaporation in quad= 83000 - 33268 = 49732 kg/h

Value of X $100X1.1X1000X0.9(40^{\circ}C) = 7719 \text{ kg/h}$ vapours for R.J. = 540X0.95 Now 4a + 2 x 7719 = 49732 a = 8574 kg/hr $4^{\text{th}} = \frac{8574}{2} = 476 \text{ sq.m.}$ H.S.-18 $3^{rd} = \frac{8574}{24} = 357 \text{ sq.m.}$

$$2^{nd} = \frac{8574 + 7719}{26} = 627 \text{ sq.m.}$$
$$1^{st} = \frac{8574 + 7719}{29} = 562 \text{ sq.m.}$$

Pan Capacity

Crushing rate – 3500 TCD(150 TCH)

	<u>m/c % cane</u>	<u>m/c per day</u>	Boiling time	No. of strikes/day	<u>Pan Cap.</u>
А	25	875 T	4Hrs.	6	146 T
В	11	385 T	6Hrs	4	196 T
С	8	280 T	8 Hrs.	3	93 T

For Continuous Pans for B &C massecuite B-massecuite per/hr – 16.5 T/hr. C-massecuite per/hr- 12 T/hr.

Crystallizer

	<u>m/c % cane</u>	<u>m/c per day</u>	<u>cooling time</u>	<u>cycles/day</u>	<u>Cryst. Cap.</u>
А	25	875 T	4Hrs	6	146 T
В	11	385 T	12Hrs	2	193 T
С	8	280 T	24Hrs	1	280 T

For Continuous Crystallisers Holding Cap. of B - Crystalliser – 200 T Holding Cap. of C - Crystalliser – 300 T

Crystallizer

Capacity Factor for Crystallizer = $222 \text{ ft}^3 / \text{tch}$ Water requirement for crystallizer = 0.8 kg/kg of massecuite W = $\alpha v d c (T_0 - T) / (t - t_0)$

Where,

- $\alpha\,$ Coefficient of cooling (1.20)
- V volume of massecuite m³ /hr
- d- Density of massecuite
- $T_0 \& T initial and final temp. of massecuite$
- $t_0 \& t$ initial and final temp. of water

Centrifugal

	<u>m/c % cane</u>	<u>m/c per Hrs</u>	<u>curing time</u>	<u>cycles/hr</u>	<u>m/c per cycle</u>
А	25	38T	6 min	10	3.8 T
В	11	17T	15 min	4	4.25 T
С	08	12T	30 min	2	6 T

Continuous machines for B&C

<u>O.D.(mm)</u>

Capacity T/hr

1100	7 for B & C after curing, 4 for C fore curing
1300	10 for B & C after curing, 6 for C fore curing
1500	12 for B & C after curing, 8 for C fore curing

Centrifugal

Gravity Factor – It is ratio of centrifugal force exerted on material to that of gravity.

Where,

- m mass of the material in kg
- ω angular velocity
- Rm-mean equivalent radius
- g gravitational force

Centrifugal

Screen area of batch centrifugal machine = 0.12 m² /tch for A & B massecuite = 0.13 m² /tch for C massecuite

- Power Consumption = 3 4 kw / ton of massecuite
- Water qty. required in centrifugal machine = 10 % on weight of sugar
 Steam required in centrifugal machine = 20 % on weight of sugar
- Steam required in centrifugal machine = 20 % on weight of sugar

Drying & Conveying

Gross Hopper Q = S A n k d

Where,

- Q out put of sugar in kg/ min.
- $S-cross\ section\ of\ hopper\ in\ m^2$
- A movement of sugar / stroke in m (3 in.)
- n rotational speed in rpm (300)
- K coefficient of slip (0.5)
- d density of sugar (kg/ m³)

Power (kw) = 2.25 + S (length * width)

Drying & Conveying

Sugar Elevator Q= G V N

Where,

Q – output of sugar in kg/ min. G – weight of sugar / bucket in kg V – speed of belt (m/ min.) N – no. of bucket / m of belt Distance between buckets 30 - 40 cm Speed of belt 18 - 30 m/min.

Cooling & Condensing

Condenser water requirement,

W = 607 + 0.3
$$t_v - t_2 / (t_2 - t_1)$$

Where,

W – weight of cooling water necessary / unit weight of vapour to be condensed

 t_1 , t_2 & t_v – temp. of cooling water, warm water & vapour. Area of spray pond = 750 kg / m2 /hr (of water to be treated) Distance between pipes = 2.5 – 4 m Distance between nozzles = 2 – 2.5 m

Cooling & Condensing

Qty. of water delivered by a nozzle $q = 0.36 \text{ cs} \sqrt{2} \text{ g H}$

Where,

- q capacity of nozzle m^3 /hr
- c contraction coefficient (0.5)
- S cross section of nozzle orifice cm^2
- g gravitational force
- H pressure at nozzle in m

Cooling & Condensing

Where, Q – total water to be cooled (m³/hr) q – qty of water delivered by one nozzle

जयते

THANK YOU

National Sugar Institute, Kanpur