

Boiler Control (Instrumentation & Process Automation)

Brajesh Singh Technical Officer (Instrumentation Engg.) National Sugar Institute Kanpur, India

Contents

- Process Diagram and Control Problems of Boiler
- <u>Characteristic Analysis & Three-element</u>
 <u>Control for Drum Level</u>
- <u>Cross-limiting Air/Fuel Ratio Combustion</u>
 <u>Control</u>

Simplified Process Diagram of a Boiler

Boiler Control Problem

Select the best pairing of MVs & CVs ?

System decomposition: (1) drum-level control;(2) combustion control; (3) steam-temperature control.

Drum-level Control Problem

- Controlled variable:
 drum level, in H (s)
- Manipulated variable:
 feedwater flow, in F (s)
- Main disturbances:
 Steam flow, in D (s)

Please explain the reason why it is a difficult problem

Drum-level Characteristics

Non-minimum phase Characteristics

$$\frac{H(s)}{D(s)} = -\frac{K_1}{s} + \frac{K_2}{T_2 s + 1}$$
$$\frac{H(s)}{D(s)} = \frac{(K_2 - K_1 T_2) s - K_1}{s(T_2 s + 1)} = \frac{-K_1 (-T_0 s + 1)}{s(T_2 s + 1)}, \quad T_0 = \frac{K_2}{K_1} - T_2$$

There will be a zero in right side of the complex plane if

The process will be called "non-minimum phase system (非最小 相位系统)"

One-element Control

Two-element Control

Problem discussion: (1) Point out the kind of control methods ? (2) Obtain control diagram of the scheme. (3) Select the controller action, the symbol and the value of C_2 , if the value is a fail-open value and $C_1=1$.

Three-element Control

Two Simplified Connections of Three-element Systems

Which differences between two connections ?

Combustion Control Problem

MVs and CVs Pairings: Flue gas \rightarrow Furnace pressure, Air \rightarrow Excess Air (O₂% in flue gas), Fuel \rightarrow Steam pressure

Simple Control Scheme for Combustion Control

Existing main problem ?

Cross-limiting Air/Fuel Ratio Combustion Control

Analyze the control scheme Advantage: (1) Decoupling design (2) Protect against excess of fuel under all conditions

Feedforward/Feedback Control for Furnace Pressure

Analyze its design principle

Steam-temperature Control Scheme

